The asymptotic variance matrix of the sample correlation matrix

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

determinant of the hankel matrix with binomial entries

abstract in this thesis at first we comput the determinant of hankel matrix with enteries a_k (x)=?_(m=0)^k??((2k+2-m)¦(k-m)) x^m ? by using a new operator, ? and by writing and solving differential equation of order two at points x=2 and x=-2 . also we show that this determinant under k-binomial transformation is invariant.

15 صفحه اول

Asymptotic algorithm for computing the sample variance of interval data

The problem of the sample variance computation for epistemic inter-val-valued data is, in general, NP-hard. Therefore, known efficient algorithms for computing variance require strong restrictions on admissible intervals like the no-subset property or heavy limitations on the number of possible intersections between intervals. A new asymptotic algorithm for computing the upper bound of the samp...

متن کامل

On Jiang's asymptotic distribution of the largest entry of a sample correlation matrix

Let {X,Xk,i; i ≥ 1, k ≥ 1} be a double array of nondegenerate i.i.d. random variables and let {pn; n ≥ 1} be a sequence of positive integers such that n/pn is bounded away from 0 and ∞. This work is devoted to the solution to an open problem posed in Li, Liu, and Rosalsky (2010) on the asymptotic distribution of the largest entry Ln = max1≤i<j≤pn ∣∣ρ̂(n) i,j ∣∣ of the sample correlation matrix Γ...

متن کامل

Distribution of the Sample Correlation Matrix and Applications

For the case where the multivariate normal population does not have null correlations, we give the exact expression of the distribution of the sample matrix of correlations R, with the sample variances acting as parameters. Also, the distribution of its determinant is established in terms of Meijer G-functions in the null-correlation case. Several numerical examples are given, and applications ...

متن کامل

APPLICATION OF THE RANDOM MATRIX THEORY ON THE CROSS-CORRELATION OF STOCK ‎PRICES

The analysis of cross-correlations is extensively applied for understanding of interconnections in stock markets. Variety of methods are used in order to search stock cross-correlations including the Random Matrix Theory (RMT), the Principal Component Analysis (PCA) and the Hierachical ‎Structures.‎ In ‎this work‎, we analyze cross-crrelations between price fluctuations of 20 ‎company ‎stocks‎...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 1990

ISSN: 0024-3795

DOI: 10.1016/0024-3795(90)90363-h